A Study of Impacts of Coupled Model Initial Shocks and State–Parameter Optimization on Climate Predictions Using a Simple Pycnocline Prediction Model

نویسنده

  • S. ZHANG
چکیده

A skillful decadal prediction that foretells varying regional climate conditions over seasonal–interannual to multidecadal time scales is of societal significance. However, predictions initialized from the climateobserving system tend to drift away from observed states toward the imperfect model climate because of the model biases arising from imperfect model equations, numeric schemes, and physical parameterizations, as well as the errors in the values of model parameters. Here, a simple coupled model that simulates the fundamental features of the real climate system and a ‘‘twin’’ experiment framework are designed to study the impact of initialization and parameter optimization on decadal predictions. One model simulation is treated as ‘‘truth’’ and sampled to produce ‘‘observations’’ that are assimilated into other simulations to produce observation-estimated states and parameters. The degree to which the model forecasts based on different estimates recover the truth is an assessment of the impact of coupled initial shocks and parameter optimization on climate predictions of interests. The results show that the coupled model initialization through coupled data assimilation in which all coupled model components are coherently adjusted by observations minimizes the initial coupling shocks that reduce the forecast errors on seasonal–interannual time scales. Model parameter optimization with observations effectively mitigates the model bias, thus constraining the model drift in long time-scale predictions. The coupled model state–parameter optimization greatly enhances the model predictability. While valid ‘‘atmospheric’’ forecasts are extended 5 times, the decadal predictability of the ‘‘deep ocean’’ is almost doubled. The coherence of optimized model parameters and states is critical to improve the long time-scale predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Prediction of Climate Change Impacts on Kharkeh Dam Reservoir Inflows with Using of CMIP5-RCP Scenarios

The objective of this research was to investigate the effects of climate change on precipitation and temperature parameters of Karkheh Basin and inflow to Karkheh dam reservoir. This was conducted by applying 21 GCM models under CMIP5 scenarios. The error indices of R2, RMSE and MAE models with the observed precipitation and temperature data were examined to find the appropriate GCM model, MRI-...

متن کامل

Investigating the effect of time scale variations of hydro climate parameters on the accuracy of LARS-WG6 climate change model

In this research, in order to investigate the effect of short and long term observational data on the quality of predicting climate parameters, the LARS-WG6 statistical downscaling model is performed for EC-EARTH model and the optimistic scenario RCP4.5 and the pessimistic scenario RCP8.5. Also the HadGEM2-ES model with the optimistic scenario RCP2.6 and the moderate scenario RCP4.5 and the opt...

متن کامل

پیش‌بینی وضعیت خشک‌سالی‌های استان زنجان طی دوره‌ی 2050 – 2011 با استفاده از خروجی مدل ریزمقیاس‌نمایی آماری (LARS-WG)

According to studies and research of Hadley Climate Prediction Center, in the 21st century, pervasive and severe drought, will be threatened the lives of millions of people around the world because of global warming. Forasmuch as the drought affects different sectors of society, therefore, monitoring and evaluation of this phenomenon in the future to proper planning is essential. To this end, t...

متن کامل

Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm

Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...

متن کامل

A synoptic-climatology approach to increase the skill of numerical weather predictions over Iran

Simplifications used in regional climate models decrease the accuracy of the regional climate models. To overcome this deficiency, usually a statistical technique of MOS is used to improve the skill of gridded outputs of the Numerical Weather Prediction (NWP) models. In this paper, an experimental synoptic-climatology based method has been used to calibrate, and decrease amount of errors in GFS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010